313 research outputs found

    Models of the formation of the planets in the 47 UMa system

    Get PDF
    Formation of planets in the 47 UMa system is followed in an evolving protoplanetary disk composed of gas and solids. The evolution of the disk is calculated from an early stage, when all solids, assumed to be high-temperature silicates, are in the dust form, to the stage when most solids are locked in planetesimals. The simulation of planetary evolution starts with a solid embryo of ~1 Earth mass, and proceeds according to the core accretion -- gas capture model. Orbital parameters are kept constant, and it is assumed that the environment of each planet is not perturbed by the second planet. It is found that conditions suitable for both planets to form within several Myr are easily created, and maintained throughout the formation time, in disks with α0.01\alpha \approx 0.01. In such disks, a planet of 2.6 Jupiter masses (the minimum for the inner planet of the 47 UMa system) may be formed at 2.1 AU from the star in \~3 Myr, while a planet of 0.89 Jupiter masses (the minimum for the outer planet) may be formed at 3.95 AU from the star in about the same time. The formation of planets is possible as a result of a significant enhancement of the surface density of solids between 1.0 and 4.0 AU, which results from the evolution of a disk with an initially uniform gas-to-dust ratio of 167 and an initial radius of 40 AU.Comment: Accepted for publication in A&A. 10 pages, 10 figure

    The Clustering Dipole of the Local Universe from the Two Micron All Sky Survey

    Get PDF
    The unprecedented sky coverage and photometric uniformity of the Two Micron All Sky Survey (2MASS) provides a rich resource for investigating the galaxies populating the local Universe. A full characterization of the large-scale clustering distribution is important for theoretical studies of structure formation. 2MASS offers an all-sky view of the local galaxy population at 2.15 micron, unbiased by young stellar light and minimally affected by dust. We use 2MASS to map the local distribution of galaxies, identifying the largest structures in the nearby universe. The inhomogeneity of these structures causes an acceleration on the Local Group of galaxies, which can be seen in the dipole of the Cosmic Microwave Background (CMB). We find that the direction of the 2MASS clustering dipole is 11 degrees from the CMB dipole, confirming that the local galaxy distribution accelerates the Local Group. From the magnitude of the dipole we find a value of the linear bias parameter b=1.37 +/- 0.3 in the K_s-band. The 2MASS clustering dipole is 19 degrees from the latest measurement of the dipole using galaxies detected by the Infrared Astronomical Satellite (IRAS) suggesting that bias may be non-linear in some wavebands.Comment: 7 pages, 4 figures, submitted to ApJ Letters, a version of the paper with full resolution figures can be found here http://daisy.astro.umass.edu/~ari

    Vortex generation in protoplanetary disks with an embedded giant planet

    Full text link
    Vortices in protoplanetary disks can capture solid particles and form planetary cores within shorter timescales than those involved in the standard core-accretion model. We investigate vortex generation in thin unmagnetized protoplanetary disks with an embedded giant planet with planet to star mass ratio 10410^{-4} and 10310^{-3}. Two-dimensional hydrodynamical simulations of a protoplanetary disk with a planet are performed using two different numerical methods. The results of the non-linear simulations are compared with a time-resolved modal analysis of the azimuthally averaged surface density profiles using linear perturbation theory. Finite-difference methods implemented in polar coordinates generate vortices moving along the gap created by Neptune-mass to Jupiter-mass planets. The modal analysis shows that unstable modes are generated with growth rate of order 0.3ΩK0.3 \Omega_K for azimuthal numbers m=4,5,6, where ΩK\Omega_K is the local Keplerian frequency. Shock-capturing Cartesian-grid codes do not generate very much vorticity around a giant planet in a standard protoplanetary disk. Modal calculations confirm that the obtained radial profiles of density are less susceptible to the growth of linear modes on timescales of several hundreds of orbital periods. Navier-Stokes viscosity of the order ν=105\nu=10^{-5} (in units of a2Ωpa^2 \Omega_p) is found to have a stabilizing effect and prevents the formation of vortices. This result holds at high resolution runs and using different types of boundary conditions. Giant protoplanets of Neptune-mass to Jupiter-mass can excite the Rossby wave instability and generate vortices in thin disks. The presence of vortices in protoplanetary disks has implications for planet formation, orbital migration, and angular momentum transport in disks.Comment: 14 pages, 15 figures, accepted for publication in A&

    A comparative study of disc-planet interaction

    Get PDF
    We perform numerical simulations of a disc-planet system using various grid-based and smoothed particle hydrodynamics (SPH) codes. The tests are run for a simple setup where Jupiter and Neptune mass planets on a circular orbit open a gap in a protoplanetary disc during a few hundred orbital periods. We compare the surface density contours, potential vorticity and smoothed radial profiles at several times. The disc mass and gravitational torque time evolution are analyzed with high temporal resolution. There is overall consistency between the codes. The density profiles agree within about 5% for the Eulerian simulations while the SPH results predict the correct shape of the gap although have less resolution in the low density regions and weaker planetary wakes. The disc masses after 200 orbital periods agree within 10%. The spread is larger in the tidal torques acting on the planet which agree within a factor 2 at the end of the simulation. In the Neptune case the dispersion in the torques is greater than for Jupiter, possibly owing to the contribution from the not completely cleared region close to the planet.Comment: 32 pages, accepted for publication in MNRA

    Planet formation in Alpha Centauri A revisited: not so accretion-friendly after all

    Full text link
    We numerically explore planet formation around alpha Cen A by focusing on the crucial planetesimals-to-embryos phase. Our code computes the relative velocity distribution, and thus the accretion vs. fragmentation trend, of planetesimal populations having any given size distribution. This is a critical aspect of planet formation in binaries since the pericenter alignment of planetesimal orbits due to the gravitational perturbations of the companion star and to gas friction strongly depends on size. We find that, for the nominal case of a MMSN gas disc, the region beyond 0.5AU from the primary is hostile to planetesimal accretion. In this area, impact velocities between different-size bodies are increased, by the differential orbital phasing, to values too high to allow mutual accretion. For any realistic size distribution for the planetesimal population, this accretion-inhibiting effect is the dominant collision outcome and the accretion process is halted. Results are robust with respect to the profile and density of the gas disc: except for an unrealistic almost gas-free case, the inner accretion safe area never extends beyond 0.75AU. We conclude that planet formation is very difficult in the terrestrial region around alpha Cen A, unless it started from fast-formed very large (>30km) planetesimals. Notwithstanding these unlikely initial conditions, the only possible explanation for the presence of planets around 1 AU from the star would be the hypothetical outward migration of planets formed closer to the star or a different orbital configuration in the binary's early history. Our conclusions differ from those of several studies focusing on the later embryos-to-planets stage, confirming that the planetesimals-to-embryos phase is more affected by binary perturbations.Comment: accepted for publication in MNRAS (Note: abstract truncated. Full abstract in the pdf file

    Algorithmic comparisons of decaying, isothermal, supersonic turbulence

    Full text link
    Contradicting results have been reported in the literature with respect to the performance of the numerical techniques employed for the study of supersonic turbulence. We aim at characterising the performance of different particle-based and grid-based techniques on the modelling of decaying supersonic turbulence. Four different grid codes (ENZO, FLASH, TVD, ZEUS) and three different SPH codes (GADGET, PHANTOM, VINE) are compared. We additionally analysed two calculations denoted as PHANTOM A and PHANTOM B using two different implementations of artificial viscosity. Our analysis indicates that grid codes tend to be less dissipative than SPH codes, though details of the techniques used can make large differences in both cases. For example, the Morris & Monaghan viscosity implementation for SPH results in less dissipation (PHANTOM B and VINE versus GADGET and PHANTOM A). For grid codes, using a smaller diffusion parameter leads to less dissipation, but results in a larger bottleneck effect (our ENZO versus FLASH runs). As a general result, we find that by using a similar number of resolution elements N for each spatial direction means that all codes (both grid-based and particle-based) show encouraging similarity of all statistical quantities for isotropic supersonic turbulence on spatial scales k<N/32 (all scales resolved by more than 32 grid cells), while scales smaller than that are significantly affected by the specific implementation of the algorithm for solving the equations of hydrodynamics. At comparable numerical resolution, the SPH runs were on average about ten times more computationally intensive than the grid runs, although with variations of up to a factor of ten between the different SPH runs and between the different grid runs. (abridged)Comment: accepted by A&A, 22 pages, 14 figure
    corecore